CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) genome editing is a revolutionary method in which a programmable RNA targets a nuclease (eg, Cas9) to a specific location in the genome.1,2 The speed, simplicity, and precision with which CRISPR-Cas9 technology enables genetic elements to be mutated, silenced, induced, or replaced has resulted in its widespread adoption in the global research community.
Next-generation sequencing (NGS) may be used at various stages of a genome editing workflow, from analyzing CRISPR off-target effects with whole-genome sequencing to confirming CRISPR knockouts and other edits with targeted sequencing. Follow-up studies can then be performed using applications such as methylation analysis and gene expression profiling with RNA sequencing, in order to assess the functional impact of a given gene edit.
Applications of CRISPR-Cas9 technology have been identified in the fields of basic and clinical research, therapeutics, drug development, agriculture, and the environment. Clinical research has shown potential utilization for CRISPR in such diseases as sickle cell disease, cancer, AIDS, Huntington’s disease, Duchenne muscular dystrophy, and more.
CRISPR genome editing allows researchers to create genetically modified cell lines and animal models with speed and precision. In addition to creating gene knockouts and gene knock-ins, researchers can use CRISPR technology to modulate gene expression via interference (CRISPRi) or activation (CRISPRa), without altering the genomic sequence. View the associated table to learn more.
CRISPR genome editing experiments result in mixed cell populations, with only a small subset carrying the desired edit. Researchers need to determine which cells have the desired CRISPR knockout or targeted mutation. Current methods to evaluate edits involve cleavage assays, PCR, Sanger sequencing, and NGS. View the associated table for additional information.
NGS is the only assay that provides both qualitative and quantitative information at high resolution across the full range of modifications, meets the needs of any throughput, and can be used to monitor off-target effects.7 NGS-based targeted sequencing provides a cost-effective solution for confirming CRISPR-induced edits by focusing on regions targeted for modification.
Learn more about targeted sequencingSuccessful implementation of CRISP/Cas9 technology should include strategies to identify and reduce off-target effects, or unintended modifications at sites other than the intended target. Computational methods to evaluate RNA specificity and predict off-target sites are commonly used during genome editing experiments.
Online tools and web-based algorithms are publicly available, as shown in the "Off-Target Analysis Tools" table. However, genome-wide analyses such as NGS-based whole-genome sequencing (WGS) are often necessary to discover off-target sites that may escape prediction algorithms.8
Learn more about WGSDr. Sam Sternberg of Columbia University discusses the biology and impact of CRISPR and gene editing.
Listen NowThe Illumina Scientific Affairs team summarizes key publications on applications of CRISPR-Cas9 technology.
View VideoResearchers discuss recent cancer-related lncRNA studies, from biomarker discovery to CRISPR- and siRNA-based approaches for silencing cancer-specific lncRNAs.
Read InterviewScientists can use a vast repertoire of sequencing methods to determine the impact of an edited sequence on the structure and function of genes. Some methods commonly used to study the functional effects of gene edits include:
Screen cell populations after CRISPR modification to determine the gene-regulatory impact of many genes in parallel in thousands of individual cells.
Assess the impact of mutations on the transcriptome as a whole or on the expression of genes/gene families.
Determine the impact of genome edits on DNA-protein binding.
Investigate the downstream impact of mutations on methylation status and chromatin remodeling.
In addition to high resolution on- and off-target assessment and functional analysis of CRISPR edits, NGS can be incorporated at additional stages of the CRISPR genome editing workflow.
During the initial design phase, resequencing of a locus or genome (for species that lack a reference genome) can aid in RNA selection. During the process of cloning CRISPR-Cas9/guide RNA constructs, resequencing of the resulting plasmids can provide rapid and high-confidence verification of the CRISPR delivery vectors, especially for high-throughput experiments with large plasmid libraries.
Francis deSouza, President and CEO of Illumina, Inc., took the stage at Aspen Ideas: Health in Colorado to educate the audience on the impact genomics is having across healthcare, and the urgency in bringing its benefits to more people, more quickly.
Read ArticleThe simplicity and low cost of CRISPR-Cas9 technology can extend gene editing in crops from large commodity species to a wider variety of agriculturally important species.
Learn more about agricultural genomicsThe speed and simplicity of CRISPR-Cas9 technology can facilitate development of cancer models and discovery of new immunotherapeutic targets and strategies.
Learn more about cancer researchThe precision of CRISPR-Cas9 genome editing technology can facilitate development of cell and animal models of human complex diseases to investigate disease pathology.
Learn more about complex disease researchThe speed, simplicity, and low cost of CRISPR-Cas9 gene editing has revolutionized cell and molecular biology in the development of gene knockouts and transgenic models.
Learn more about cellular and molecular biology research