In principle, the concepts behind Sanger vs. next-generation sequencing (NGS) technologies are similar. In both NGS and Sanger sequencing (also known as dideoxy or capillary electrophoresis sequencing), DNA polymerase adds fluorescent nucleotides one by one onto a growing DNA template strand. Each incorporated nucleotide is identified by its fluorescent tag.
The critical difference between Sanger sequencing and NGS is sequencing volume. While the Sanger method only sequences a single DNA fragment at a time, NGS is massively parallel, sequencing millions of fragments simultaneously per run. This process translates into sequencing hundreds to thousands of genes at one time. NGS also offers greater discovery power to detect novel or rare variants with deep sequencing.
Advantages of NGS include:
Explore the benefits and limitations of each method to understand which one best suits your needs.
“With Sanger sequencing, we saw a limited DNA snapshot… NGS and its massively parallel sequencing enable us to look at tens to hundreds of thousands of reads per sample.”
Sanger Sequencing | Targeted NGS | |
---|---|---|
Benefits |
|
|
Challenges |
|
|
* Discovery power is the ability to identify novel variants.
† Mutation resolution is the size of the mutation identified. NGS can identify large chromosomal rearrangements down to single nucleotide variants.
‡ 10 ng DNA will produce ~1 kb with Sanger sequencing or ~300 kb with targeted resequencing (250 bp amplicon length × 1536 amplicons with an AmpliSeq for Illumina workflow)
NGS enabled Franco Taroni, MD to identify variants in a fraction of the time and at a significantly lower cost than Sanger sequencing.
Read InterviewViafet uses the VeriSeq PGS Solution, enabling IVF clinics to provide fast, accurate, and efficient PGS services.
Read InterviewSanger sequencing offered a "limited DNA snapshot." Now, Michael Bunce, PhD uses NGS to look at hundreds of thousands of reads per sample.
Read InterviewSanger sequencing can be a good choice when interrogating a small region of DNA on a limited number of samples or genomic targets (~20 or fewer). Otherwise, targeted NGS is more likely to suit your needs. NGS allows you to screen more samples cost-effectively and detect multiple variants across targeted areas of the genome—an approach that would be costly and time-consuming using Sanger sequencing.
Watch this animation to see how the easy and accessible Illumina NGS technology can complement your Sanger sequencing work.
Find the right library prep kit for your sample type and application.
Affordable, fast, and accessible sequencing power for targeted or small genome sequencing in any lab.
An on-site software solution for creating sequencing runs, monitoring run status, and analyzing data.
This method involves isolating and sequencing a subset of genes or a genomic region of interest, which can conserve lab resources.
This method delivers a comprehensive view of genetic variation, ideal for discovery applications.
Learn more about how NGS-based targeted resequencing can help you identify variants in less time and for less money than Sanger sequencing.