# TruSight<sup>™</sup> Oncology Comprehensive

A US FDA-approved nextgeneration sequencing solution for comprehensive genomic profiling



# General information

## What is TruSight Oncology Comprehensive?

As a global leader in next-generation sequencing (NGS) and microarray-based solutions, Illumina is dedicated to improving human health by unlocking the power of the genome. Illumina continues to innovate by offering TruSight Oncology (TSO) Comprehensive, a US FDA-approved, distributable, comprehensive genomic profiling (CGP) in vitro diagnostic (IVD) with pan-cancer companion diagnostic (CDx) claims. TSO Comprehensive can generate a broad molecular profile of solid tumor patient samples from formalin-fixed, paraffin-embedded (FFPE) tissue, maximizing a lab's ability to find actionable alterations that can help inform therapy decisions according to clinical guidelines.

#### What is the product's intended use?

TruSight Oncology Comprehensive is a qualitative in vitro diagnostic test that uses targeted next-generation sequencing to detect variants in 517 genes using nucleic acids extracted from formalin-fixed, paraffin-embedded (FFPE) tumor tissue samples from cancer patients with solid malignant neoplasms using the Illumina NextSeq™ 550Dx Instrument. The test can be used to detect single nucleotide variants, multi-nucleotide variants, insertions, and deletions from DNA, and fusions in 24 genes and splice variants in one gene from RNA.

The test also reports a Tumor Mutational Burden (TMB) score. The test is intended to be used as a companion diagnostic to identify cancer patients who may benefit from treatment with the targeted therapies listed in Table 1, in accordance with the approved therapeutic product labeling.

In addition, the test is intended to provide tumor profiling information for use by qualified health care professionals in accordance with professional quidelines in oncology for patients with solid malignant neoplasms. Genomic findings other than those listed in Table 1 of the intended use statement are not conclusive or prescriptive for labeled use of any specific therapeutic product.

Table 1: Companion Diagnostic Indications

| Tumor Type                 | Biomarker(s) Detected | Therapy                   |  |  |
|----------------------------|-----------------------|---------------------------|--|--|
| Solid Tumors               | NTRK1/2/3 fusions     | VITRAKVI® (larotrectinib) |  |  |
| Non-Small Cell Lung Cancer | RET fusions           | RETEVMO® (selpercatinib)  |  |  |

## What is a companion diagnostic (CDx)?

A CDx is a medical device, often an in vitro diagnostic (IVD), that provides information that is essential for the safe and effective use of a corresponding drug or biological product. A CDx can identify patients most likely to benefit from a particular therapeutic product.

## What types of cancer is TSO Comprehensive approved to test?

TSO Comprehensive is approved for:

- Tumor profling—solid tumors
- NTRK1/2/3 CDx—solid tumors
- RET CDx-non-small cell lung cancer

# What specimen type is TSO Comprehensive approved to test?

TSO Comprehensive is approved for use with nucleic acids extracted from FFPE tumor tissue samples.

# Will additional claims be added to TSO Comprehensive?

Illumina has a pipeline of CDx and tumor profiling claims planned to be added to TSO Comprehensive over time. Inquire with your Illumina sales representative to learn more.

## Where will TSO Comprehensive be sold?

TSO Comprehensive is US FDA approved and will be for sale in the United States.

## When will TSO Comprehensive be available?

TSO Comprehensive kits will be available to ship in November 2024. For more information on product availability, including when you can begin placing orders, contact your Illumina sales representative.

## What genes are tested by TSO Comprehensive?

TSO Comprehensive includes key biomarkers in clinical guidelines, drug labels, and clinical trials across all solid tumor types. Content includes RNA fusions and splice variants in one gene (Table 2 and Table 3, respectively), small DNA variants (Table 4), and the complex genomic signature, TMB. Content is subject to change with additional tumor profiling content under development (Table 5).

Table 2: RNA content included in TSO Comprehensive<sup>a</sup>

| AXL  | CDK4              | ERG  | ETV4  | FGFR2 | KIF5B | NTRK2 | RAF1    |
|------|-------------------|------|-------|-------|-------|-------|---------|
| BCL2 | EGFR              | ESR1 | EWSR1 | FGFR3 | NRG1  | NTRK3 | RET     |
| BRAF | EML4 <sup>b</sup> | ETV1 | FGFR1 | FLI1  | NTRK1 | PAX3  | TMPRSS2 |

a. Genes listed are assessed for known and novel fusions.

Table 3: Splice variants included in TSO Comprehensive

| EGFR |
|------|
|------|

b. EML4-ALK fusions are not included.

Table 4: DNA content included in TSO Comprehensive

| ABL1     | BMPR1A  | CTCF    | ETS1    | FUBP1     | ID3      | MAP2K4    | NOTCH1   | PMS2    | ROS1    | STK11    |
|----------|---------|---------|---------|-----------|----------|-----------|----------|---------|---------|----------|
| ABL2     | BRAF    | CTLA4   | ETV1    | FYN       | IDH1     | MAP3K1    | NOTCH2   | PNRC1   | RPS6KA4 | STK40    |
| ABRAXAS1 | BRCA1   | CTNNA1  | ETV4    | GABRA6    | IDH2     | MAP3K13   | NOTCH3   | POLD1   | RPS6KB1 | SUFU     |
| ACVR1    | BRCA2   | CTNNB1  | ETV5    | GATA1     | IFNGR1   | MAP3K14   | NOTCH4   | POLE    | RPS6KB2 | SUZ12    |
| ACVR1B   | BRD4    | CUL3    | ETV6    | GATA2     | IGF1     | MAP3K4    | NPM1     | PPARG   | RPTOR   | SYK      |
| ADGRA2   | BRIP1   | CUX1    | EWSR1   | GATA3     | IGF1R    | MAPK1     | NRAS     | PPM1D   | RUNX1   | TAF1     |
| AKT1     | BTG1    | CXCR4   | EZH2    | GATA4     | IGF2     | МАРК3     | NRG1     | PPP2R1A | RUNX1T1 | ТВХЗ     |
| AKT2     | BTK     | CYLD    | FAM46C  | GATA6     | IKBKE    | MAX       | NSD1     | PPP2R2A | RYBP    | TCF3     |
| AKT3     | CALR    | DAXX    | FANCA   | GEN1      | IKZF1    | MCL1      | NTRK1    | PPP6C   | SDHA    | TCF7L2   |
| ALK      | CARD11  | DCUN1D1 | FANCC   | GID4      | IL10     | MDC1      | NTRK2    | PRDM1   | SDHAF2  | TERC     |
| ALOX12B  | CASP8   | DDR2    | FANCD2  | GLI1      | IL7R     | MDM2      | NTRK3    | PREX2   | SDHB    | TERT     |
| AMER1    | CBFB    | DDX41   | FANCE   | GNA11     | INHA     | MDM4      | NUP93    | PRKAR1A | SDHC    | TET1     |
| ANKRD11  | CBL     | DHX15   | FANCF   | GNA13     | INHBA    | MED12     | NUTM1    | PRKCI   | SDHD    | TET2     |
| ANKRD26  | CCND1   | DICER1  | FANCG   | GNAQ      | INPP4A   | MEF2B     | PAK1     | PRKDC   | SETBP1  | TFE3     |
| APC      | CCND2   | DIS3    | FANCI   | GNAS      | INPP4B   | MEN1      | PAK3     | PRKN    | SETD2   | TFRC     |
| AR       | CCND3   | DNAJB1  | FANCL   | GPS2      | INSR     | MET       | PAK5     | PRSS8   | SF3B1   | TGFBR1   |
| ARAF     | CCNE1   | DNMT1   | FAS     | GREM1     | IRF2     | MGA       | PALB2    | PTCH1   | SH2B3   | TGFBR2   |
| ARFRP1   | CD274   | DNMT3A  | FAT1    | GRIN2A    | IRF4     | MITF      | PARP1    | PTEN    | SH2D1A  | TMEM127  |
| ARID1A   | CD276   | DNMT3B  | FBXW7   | GRM3      | IRS1     | MLH1      | PAX3     | PTPN11  | SHQ1    | TMPRSS2  |
| ARID1B   | CD74    | DOT1L   | FGF1    | GSK3B     | IRS2     | MLL/KMT2A | PAX5     | PTPRD   | SLIT2   | TNFAIP3  |
| ARID2    | CD79A   | E2F3    | FGF10   | H3F3A     | JAK1     | MLLT3     | PAX7     | PTPRS   | SLX4    | TNFRSF14 |
| ARID5B   | CD79B   | EED     | FGF14   | H3F3B     | JAK2     | MPL       | PAX8     | PTPRT   | SMAD2   | TOP1     |
| ASXL1    | CDC73   | EGFL7   | FGF19   | H3F3C     | JAK3     | MRE11A    | PBRM1    | QKI     | SMAD3   | TOP2A    |
| ASXL2    | CDH1    | EGFR    | FGF2    | HGF       | JUN      | MSH2      | PDCD1    | RAB35   | SMAD4   | TP53     |
| ATM      | CDK12   | EIF1AX  | FGF23   | HIST1H1C  | KAT6A    | MSH3      | PDCD1LG2 | RAC1    | SMARCA4 | TP63     |
| ATR      | CDK4    | EIF4A2  | FGF3    | HIST1H2BD | KDM5A    | MSH6      | PDGFRA   | RAD21   | SMARCB1 | TRAF2    |
| ATRX     | CDK6    | EIF4E   | FGF4    | HIST1H3A  | KDM5C    | MST1      | PDGFRB   | RAD50   | SMARCD1 | TRAF7    |
| AURKA    | CDK8    | ELOC    | FGF5    | HIST1H3B  | KDM6A    | MST1R     | PDK1     | RAD51   | SMC1A   | TSC1     |
| AURKB    | CDKN1A  | EML4    | FGF6    | HIST1H3C  | KDR      | MTOR      | PDPK1    | RAD51B  | SMC3    | TSC2     |
| AXIN1    | CDKN1B  | EMSY    | FGF7    | HIST1H3D  | KEAP1    | MUTYH     | PGR      | RAD51C  | SMO     | TSHR     |
| AXIN2    | CDKN2A  | EP300   | FGF8    | HIST1H3E  | KEL      | MYB       | PHF6     | RAD51D  | SNCAIP  | U2AF1    |
| AXL      | CDKN2B  | EPCAM   | FGF9    | HIST1H3F  | KIF5B    | MYC       | PHOX2B   | RAD52   | SOCS1   | VEGFA    |
|          | CDKN2C  | ЕРНАЗ   | FGFR1   | HIST1H3G  | KIT      | MYCL1     | PIK3C2B  | RAD54L  | SOX10   | VHL      |
| BAP1     | CEBPA   | EPHA5   | FGFR2   | HIST1H3H  | KLF4     | MYCN      | PIK3C2G  | RAF1    | SOX17   | VTCN1    |
| BARD1    | CENPA   | EPHA7   | FGFR3   | HIST1H3I  | KLHL6    | MYD88     | PIK3C3   | RANBP2  | SOX2    | WISP3    |
| BBC3     | CHD2    | EPHB1   | FGFR4   | HIST1H3J  | KRAS     | MYOD1     | PIK3CA   | RARA    | SOX9    | WT1      |
| BCL10    | CHD4    | ERBB2   | FH      | HIST2H3A  | LAMP1    | NAB2      | PIK3CB   | RASA1   | SPEN    | XIAP     |
| BCL2     | CHEK1   | ERBB3   | FLCN    | HIST2H3C  | LATS1    | NBN       | PIK3CD   | RB1     | SPOP    | XPO1     |
| BCL2L1   | CHEK2   | ERBB4   | FLI1    | HIST2H3D  | LATS2    | NCOA3     | PIK3CG   | RBM10   | SPTA1   | XRCC2    |
| BCL2L11  | CIC     | ERCC1   | FLT1    | HIST3H3   | LMO1     | NCOR1     | PIK3R1   | RECQL4  | SRC     | YAP1     |
| BCL2L2   | COP1    | ERCC2   | FLT3    | HNF1A     | LRP1B    | NEGR1     | PIK3R2   | REL     | SRSF2   | YES1     |
| BCL6     | CREBBP  | ERCC3   | FLT4    | HNRNPK    | LYN      | NF1       | PIK3R3   | RET     | STAG1   | ZBTB2    |
| BCOR     | CRKL    | ERCC4   | FOXA1   | HOXB13    | LZTR1    | NF2       | PIM1     | RHEB    | STAG2   | ZBTB7A   |
| BCORL1   | CRLF2   | ERCC5   | FOXL2   | HRAS      | MAGI2    | NFE2L2    | PLCG2    | RHOA    | STAT3   | ZFHX3    |
| BCR      | CSF1R   | ERG     | FOXO1   | HSD3B1    | MALT1    | NFKBIA    | PLK2     | RICTOR  | STAT4   | ZNF217   |
|          | 55. 111 |         | . 5,.51 |           | .,,,,=11 |           |          |         | 2       | //       |

| BIRC3 | CSF3R   | ERRFI1 | FOXP1 | HSP90AA1 | MAP2K1 | NKX2-1 | PMAIP1 | RIT1  | STAT5A | ZNF703 |
|-------|---------|--------|-------|----------|--------|--------|--------|-------|--------|--------|
| BLM   | CSNK1A1 | ESR1   | FRS2  | ICOSLG   | MAP2K2 | NKX3-1 | PMS1   | RNF43 | STAT5B | ZRSR2  |

## Table 5: Tumor profiling content under development

| MSI                                                  |  |
|------------------------------------------------------|--|
| Gene amplifications from DNA                         |  |
| Additional gene fusions and splice variants from RNA |  |

## What is comprehensive genomic profiling (CGP)?

CGP is a type of molecular testing for evaluating advanced stage tumors using a technique called NGS to assess multiple variant classes (eg, SNVs, MNVs, insertions, deletions, fusions, splice variants) in a single test. CGP can interrogate DNA and/or RNA isolated from FFPE tissue, circulating tumor DNA (ctDNA) isolated from peripheral whole blood, as well as other sample types. CGP is a powerful precision medicine tool that better identifies tumor variants sensitive to targeted and immuno-therapies compared to traditional molecular testing, as it simultaneously detects several variant types using one test, sparing usage of valuable tissue specimens.

TSO Comprehensive is approved for use with nucleic acids extracted from FFPE tumor tissue, not ctDNA from peripheral whole blood.

## What are the key attributes of the TSO Comprehensive assay?

TSO Comprehensive:

- Is the first US FDA-approved, distributed IVD CGP solution with pan-cancer CDx claims
- Includes both DNA and RNA content and detects several variant classes, plus TMB
- Calls fusions from RNA to maximize sensitivity for detection
- · Provides a kitted, US FDA-approved IVD solution that can be implemented by local labs in house to generate CGP results with a 4-5 day workflow
- Can alleviate much of the resource-intensive validation and regulatory requirements associated with implementing Laboratory-Developed Tests (LDTs)
- Has a clear pathway to public payer reimbursement under the CMS National Coverage Determination (NCD) 90.2 as an IVD CGP test with CDx claims, and may be eligible for increased commercial payer coverage<sup>1</sup>
- Provides physicians with a clear, integrated, clinical report for each sample as part of the standard workflow

# Workflow

## What is the recommended sample input?

TSO Comprehensive requires 40 ng RNA and/or 40 ng DNA extracted from FFPE tissue.

## How are results reported for TSO Comprehensive?

A clear, integrated report is generated as part of the TSO Comprehensive workflow. Contact your Illumina sales representative to view an example TSO Comprehensive report.

#### What are the workflow steps from sample preparation to final report?

The TSO Comprehensive workflow includes the following steps: sample acquisition and processing, DNA and RNA extraction, library preparation and enrichment, fully automated sequencing and analysis, and report generation (Figure 1).

## Fully automated sequencing and data analysis

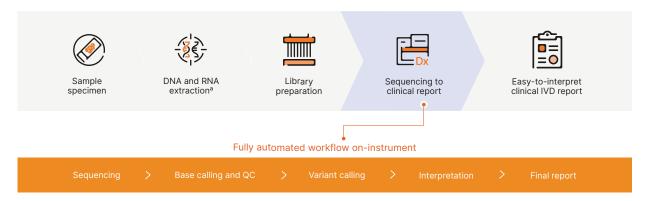



Figure 1: TSO Comprehensive sample to report workflow workflow—The fully automated workflow on the NextSeq 550Dx System sequences samples; performs base calling and QC, variant calling, and interpretation; and generates a clinical report. The entire workflow is complete in 4-5 days.

a. Extraction kits must be purchased separately.

## How long is the turnaround time (TAT) from sample to report?

The TAT is 4-5 days from extracted DNA and/or RNA to the final clinical report.

# What sequencing platform is needed?

TSO Comprehensive is run on the NextSeq 550Dx Instrument, an FDA-regulated high-throughput sequencing platform. For platform acquisition options available, inquire with your Illumina sales representative.

## What is the expected analysis time for a sample batch processed in a sequencing run?

Analysis time is 8-10 hours.

# Reimbursement

# What reimbursement is available for NGS-based oncology tests in the US?

IVD CGP tumor profiling assays with CDx claims across solid malignant neoplasms are covered for eligible Medicare beneficiaries throughout the US under National Coverage Determination (NCD) 90.2. Commercial coverage for assays with this indication increases by more than a third of US commercially insured lives as compared to assays without CDx claims.1

# Learn more

TruSight Oncology Comprehensive

# Reference

1. Policy Reporter. Data pulled in 2023.



1.800.809.4566 toll-free (US) | +1.858.202.4566 tel techsupport@illumina.com | www.illumina.com

© 2024 Illumina, Inc. All rights reserved. All trademarks are the property of Illumina, Inc. or their respective owners. For specific trademark information, see www.illumina.com/company/legal.html. M-AMR-01475 v1.0