illumina

Local Run Manager DNA GenerateFASTQ Dx Analysis Module

Sprievodca pracovnými postupmi pre MiSeqDx

NA DIAGNOSTICKÉ ÚČELY IN VITRO

Základné informácie	3
Zadanie informácií o chode	3
Metódy analýzy	5
Zobraziť chod a výsledky	5
Správa o výsledkoch	6
Výstupné súbory analýzy	6
História revízií	10
Technická pomoc	11

Dokument č. 200015661 v01 SLK Máj 2022 NA DIAGNOSTICKÉ ÚČELY IN VITRO VLASTNÍCTVO SPOLOČNOSTI ILLUMINA

Tento dokument a jeho obsah sú vlastníctvom spoločnosti Illumina, Inc. a jej pridružených spoločností (ďalej len "Illumina") a sú určené výlučne na zmluvné použitie u zákazníka v súvislosti s používaním výrobku (výrobkov) opísaného (opísaných) v tomto dokumente a na žiadny iný účel. Tento dokument a jeho obsah sa nesmú používať ani šíriť na žiadny iný účel a/alebo inak poskytovať, zverejňovať alebo reprodukovať akýmkoľvek spôsobom bez predchádzajúceho písomného súhlasu spoločnosti Illumina. Spoločnosť Illumina týmto dokumentom neposkytuje žiadnu licenciu na základe patentu, ochrannej známky, autorských práv alebo práv podľa zvykového práva, či podobných práv tretích strán.

Pokyny v tomto dokumente musia byť prísne a výslovne dodržiavané kvalifikovaným a riadne vyškoleným personálom, aby sa zabezpečilo správne a bezpečné používanie tu popísaného výrobku (výrobkov). Pred použitím takéhoto výrobku (výrobkov) je nutné prečítať si celý obsah tohto dokumentu s porozumením.

NEPREČÍTANIE VŠETKÝCH POKYNOV TU OBSIAHNUTÝCH A ICH VÝSLOVNÉ NEDODRŽANIE MÔŽE MAŤ ZA NÁSLEDOK POŠKODENIE VÝROBKU (VÝROBKOV), ZRANENIE OSOBY VRÁTANE POUŽÍVATEĽOV ALEBO INÝCH OSÔB, POŠKODENIE ĎALŠIEHO MAJETKU A ZRUŠENIE PLATNOSTI ZÁRUKY VZŤAHUJÚCEJ SA NA VÝROBOK (VÝROBKY).

SPOLOČNOSŤ ILLUMINA NEPREBERÁ ŽIADNU ZODPOVEDNOSŤ VYPLÝVAJÚCU Z NEBEZPEČNÉHO POUŽITIA TU UVÁDZANÝCH PRODUKTOV (VRÁTANE SÚČASTÍ ALEBO SOFTVÉRU).

© 2022 Illumina, Inc. Všetky práva vyhradené.

Všetky ochranné známky sú vlastníctvom spoločnosti Illumina, Inc. alebo príslušných vlastníkov. Informácie o konkrétnych ochranných známkach nájdete na stránke www.illumina.com/company/legal.html.

Základné informácie

Modul Local Run Manager DNA GenerateFASTQ Dx najprv vykoná demultiplexáciu čítania indexov. Ak je prítomný, DNA GenerateFASTQ Dx vygeneruje medzianalytické výstupné súbory vo formáte súboru FASTQ a potom ukončí pracovný postup. Nevykoná sa žiadne zarovnanie alebo ďalšia analýza. Súbory FASTQ sú požadovaným vstupom pre analýzu s analyzačnými nástrojmi tretích strán.

Modul Local Run Manager DNA GenerateFASTQ Dx môžete spustiť na verzii softvéru Local Run Manager v3.1.0 (alebo neskoršej) a je kompatibilný s Windows 10. Analytický modul podporuje sekvenovanie na analýzu použitím analýzy Illumina DNA Prep With Enrichment Dx.

Informácie o tomto sprievodcovi

Tento sprievodca poskytuje pokyny na nastavenie parametrov chodu pre sekvenovanie a analýzu DNA v analytickom module DNA GenerateFASTQ Dx. Použitie softvéru vyžaduje základnú znalosť aktuálneho operačného systému Windows a používateľského rozhrania na základe webového prehliadača. Informácie o nastaveniach tabule a systému softvéru Local Run Manager (Správca lokálnych chodov) nájdete v *Local Run Manager Software Reference Guide for MiSeqDx (Referenčná príručka softvéru Správca lokálnych chodov pre prístroj MiSeqDx, dokument č. 200003931).*

Zadanie informácií o chode

Nastavenie parametrov

- 1 Prihláste sa do aplikácie Local Run Manager (Správca lokálnych chodov).
- 2 Vyberte možnosť Create Run(Vytvoriť chod) a potom zvoľte DNA GenerateFASTQ Dx.
- 3 Vložte jedinečný názov chodu, ktorý identifikuje chod zo sekvenovania v priebehu analýzy (40 znakov alebo menej).

Názov chodu môže obsahovať alfanumerické znaky, medzery a špeciálne znaky `.~!@#\$%-_{}. Nemôžete použiť už existujúci názov chodu.

- [Voliteľné] Vložte opis chodu, aby sa uľahčila jeho identifikácia (150 znakov alebo menej).
 Opis chodu môže obsahovať alfanumerické znaky, medzery a tieto špeciálne znaky:
 .~!@#\$%-_{}.
- 5 Nakonfigurujte nasledujúce nastavenia chodu:
 - Doštička s indexmi vyberte rozloženie doštičky s indexmi, ktoré ste použili pri príprave knižnice. Vybrať môžete zo súpravy indexov A, súpravy indexov B a súpravy indexov AB. Informácie o rozložení doštičky s indexmi nájdete v príbalovom letáku Illumina DNA Prep With Enrichment Dx. Súpravy indexov A a B obsahujú 96 vzoriek a príslušné jedinečné duálne priméry (UDP). Indexová súprava AB obsahuje 192 vzoriek a príslušné UDP.
 - Read Type (Typ čítania) vyberte čítanie z jedného konca alebo čítanie z oboch koncov. Predvolený typ čítania je čítanie z oboch koncov.
 - Read Lengths (Dĺžky čítania) vložte dĺžku čítania. Predvolená dĺžka čítania je 151.
- 6 Pod voľbou Module-Specific Settings (Nastavenia podľa modulu) zvoľte možnosť Adapter Trimming (Trimovanie adaptéra).
 Trimovanie adaptéra is u predvalanem postavení al tivovaní

Trimovanie adaptéra je v predvolenom nastavení aktivované.

7 Vyberte počet vzoriek, ktoré sa majú sekvenovať. Vybraný počet vzoriek zahŕňa automaticky vyplnené odporúčania pre UDP. Ak nechcete použiť odporúčania pre UDP, vyberte **Custom** (Vlastné).

Ak počet vzoriek, ktoré sekvenujete, nie je zahrnutý v rozbaľovacom zozname, vyberte najbližší počet vzoriek. Uistite sa, že vybraný počet je menší ako počet, ktorý sa sekvenuje, a je potrebné pridať dodatočné UDP. Napríklad na testovanie 18 vzoriek vyberte možnosť 16.

Stanovenie vzoriek pre chod

Stanovte vzorky pre chod použitím niektorej z uvedených možností.

- Manuálne zadanie vzoriek použite prázdnu tabuľku na obrazovke Create Run (Vytvorenie chodu).
- Importovanie vzoriek prejdite do externého súboru vo formáte hodnôt oddelených čiarkou (*.csv). Na obrazovke Create Run (Vytvorenie chodu) bude k dispozícii šablóna na stiahnutie.

Manuálne zadanie vzoriek

- Do poľa Sample ID (ID vzorky) zadajte jedinečné identifikačné číslo vzorky. Použite alfanumerické znaky a/alebo pomlčky (40 znakov alebo menej).
 ID vzorky, príslušný opis vzorky a pozícia UDP sú zvýraznené modrou farbou na indikáciu toho, že vzorka bola vložená.
- 2 **[Voliteľné]** Na výber pozitívnych a negatívnych kontrolných vzoriek kliknite pravým tlačidlom myši na jamky so vzorkami.
- 3 [Voliteľné] Do tabuľky Sample Description (Opis vzorky) zadajte opis vzorky. Opis vzorky môže obsahovať alfanumerické znaky, bodky a špeciálne znaky `~!@#\$%-_{}. Medzery nie sú povolené. Ak sa ID vzorky spojené s opisom vzorky znova použije v neskoršom chode, pôvodný opis vzorky sa prepíše.
- 4 Upravte odporúčané pozície UDP podľa potreby. Navrhované pozície jamôk na vzorky sú zvýraznené žltou, fialovou, oranžovou a ružovou farbou. Ak používate navrhované jamky na vzorky, softvér automaticky vyplní adaptéry indexov UDP, ktoré spĺňajú požiadavky na odlišnosť indexov. Ak počet vzoriek, ktoré ste vybrali, nesúhlasí presne s počtom vzoriek, ktoré testujete, ubezpečte sa, že ste vybrali adaptéry indexov UDP pre dodatočné jamky.
- 5 **[Voliteľné]** Na exportovanie súboru s informáciami o vzorkách vyberte **možnosť Export Samples** (Exportovať vzorky).
- 6 Vyberte možnosť Save Run (Uložiť chod).

Import hárka údajov na analýzu vzoriek

Môžete importovať informácie o vzorkách zo súboru s informáciami o vzorkách, ktorý bol predtým exportovaný z modulu DNA GenerateFASTQ Dx použitím funkcie Export Samples (Exportovať vzorky), alebo šablónu, ktorá sa môže vygenerovať zvolením možnosti **Template** (Šablóna) na obrazovke Create run (Vytvorenie chodu). Prečítajte si časť *Manuálne zadanie vzoriek* na strane 4, kde nájdete pokyny, ako vytvoriť a exportovať informácie o vzorkách.

Šablóna neobsahuje automaticky vyplnené odporúčania pre UDP.

Úprava súboru šablóny:

- 1 Ak chcete vytvoriť nové rozloženie doštičky, vyberte možnosť **Template** (Šablóna) na obrazovke Create Run (Vytvorenie chodu). Súbor šablóny obsahuje správne hlavičky stĺpcov na import. Upravte súbor podľa uvedených pokynov.
 - a Otvorte hárok údajov na analýzu vzoriek v textovom editore.

- b Zadajte požadované informácie o vzorke.
- c Uložte súbor vo formáte hodnôt oddelených čiarkou (*.csv). Ubezpečte sa, že ID vzoriek sú jedinečné.

Import informácií o vzorke:

- 2 Zvoľte možnosť Import Samples (Importovať vzorky) a potom vyberte súbor CSV.
- 3 [Voliteľné] Na exportovanie informácií o vzorke do externého súboru vyberte možnosť Export (Exportovať).
- 4 Vyberte možnosť Save Run (Uložiť chod).

Úprava chodu

Pokyny, ako upraviť informácie chodu pred sekvenovaním, nájdete v Local Run Manager Software Reference Guide for MiSeqDx (Referenčná príručka softvéru Správca lokálnych chodov pre prístroj MiSeqDx, dokument č. 200003931).

Metódy analýzy

Analytický modul DNA GenerateFASTQ Dx vykonáva nasledujúce analytické kroky a potom zapíše výstupné súbory analýzy do priečinka zarovnania.

- Demultiplexuje čítania indexov
- ► Generuje súbory FASTQ

Demultiplexácia

Demultiplexácia slúži na porovnanie každej sekvencie načítania indexu so sekvenciami indexu určenými v chode. V rámci tohto kroku sa nezohľadňujú žiadne kvalitatívne hodnoty.

Identifikácia načítania indexov prebieha podľa nasledujúcich krokov:

- ▶ Vzorky sú očíslované počnúc číslom 1 podľa poradia, v ktorom sú pre daný chod uvádzané.
- Číslo vzorky 0 je vyhradené pre klastre, ktoré neboli priradené k vzorke.
- Klastre sa priraďujú k vzorke vtedy, keď sa sekvencia indexu presne zhoduje, alebo vtedy, ak načítanie indexu vykazuje max. jednu nezhodu.

Generovanie súboru FASTQ

Po dokončení demultiplexácie softvér generuje "medzianalytické" súbory vo formáte FASTQ, t. j. v textovom formáte, ktorý sa používa na vyjadrenie sekvencií. Súbory FASTQ obsahujú čítania pre každú vzorku a súvisiace skóre kvality. Vylúčené sú akékoľvek kontroly použité v chode a klastre, ktoré neprešli filtrami.

Každý súbor FASTQ obsahuje čítania iba pre jednu vzorku a názov danej vzorky sa zahrnie do názvu súboru FASTQ. Súbory FASTQ sú primárnym vstupom na zarovnanie.

Zobraziť chod a výsledky

- 1 Na tabuli Local Run Manager (Správca lokálnych chodov) vyberte názov chodu.
- 2 V tabuľke Run Overview (Prehľad o chode) skontrolujte metriku sekvenovacieho chodu.

- 3 Na zmenu lokality súboru s údajmi analýzy pre budúce opätovné zaradenie vybraného chodu do frontu vyberte ikonu Edit (Upraviť) a upravte umiestnenie súboru vo výstupnom priečinku chodu. Nemôžete upraviť názov výstupného priečinka chodu.
- 4 **[Voliteľné]** Vyberte **Copy to Clipboard** (Kopírovať do schránky), ak chcete skopírovať umiestnenie súboru vo výstupnom priečinku chodu.
- 5 Vyberte tabuľku s informáciami o sekvenovaní na kontrolu informácií o parametroch chodu a spotrebnom materiáli.
- 6 Vyberte tabuľku Samples & Results (Vzorky a výsledky), ak chcete zobraziť správu o analýze.
 - Ak bola analýza opätovne zaradená do frontu, vyberte vhodnú analýzu z rozbaľovacej ponuky Select Analysis (Vybrať analýzu).
 - ▶ V ľavom navigačnom paneli vyberte ID vzorky, ak chcete zobraziť správu pre inú vzorku.
- 7 **[Voliteľné]** Vyberte **Copy to Clipboard** (Kopírovať do schránky), ak chcete skopírovať umiestnenie priečinku súboru s analýzou.

Správa o výsledkoch

Výsledky sú zhrnuté v tabuľke Vzorky a výsledky.

Vzorky

Tabuľka 1 Tabuľka so vzorkami

Hlavička stĺpca	Opis
ID vzorky	ID vzorky sa pridelilo pri vytvorení chodu.
Doštička	Doštička sa poskytla s doštičkou s indexmi pri vytvorení chodu. Stĺpec sa zobrazuje, len ak je vybratá doštička s indexmi AB.
Indexová jamka	Indexová jamka sa poskytla s lokalitou jamky na vzorku pri vytvorení chodu.
Opis	Opis vzorky sa poskytol pri vytvorení chodu.
UDP	UDP použité so vzorkou.
Kontrola	Pozitívna alebo negatívna kontrola použitá so vzorkou.

Indexovanie

Tabuľka 2 Tabuľka indexov

Hlavička stĺpca	Opis
Počet indexov	Pridelené ID na základe poradia, v akom sú vzorky uvedené v tabuľke vzoriek.
ID vzorky	ID vzorky sa pridelilo pri vytvorení chodu.
UDP	UDP použité so vzorkou.
% identifikovaných čítaní (PF)	Percentuálny podiel čítaní, ktoré prešli filtrami.

Výstupné súbory analýzy

Nasledujúce výstupné súbory analýzy sa generujú pre analytický modul DNA GenerateFASTQ Dx.

Názov súboru	Opis
Demultiplexácia (*.demux)	Medzianalytické súbory obsahujúce výsledky demultiplexácie.
FASTQ (*.fastq.gz)	Medzianalytické súbory obsahujúce kvalitatívne skóre primárnej analýzy báz. Súbory FASTQ sú primárnym vstupom pre zarovnanie.

Formát súboru na demultiplexáciu

Proces demultiplexácie načíta sekvenciu indexu pripojenú ku každému klastru a určí, z ktorej vzorky klaster pochádza. Mapovanie medzi klastrami a číslom vzorky je zapísané do súboru na demultiplexáciu (*.demux) pre každú dlaždicu prietokového článku.

Formát pomenovania súboru na demultiplexáciu je s_1_X.demux, pričom X je číslo dlaždice.

Súbory na demultiplexáciu začínajú nadpisom:

- Verzia (4 byte integer), aktuálne 1
- Počet klastrov (4 byte integer)

Zvyšok súboru tvoria čísla vzoriek každého klastra z dlaždice.

Keď je demultiplexácia dokončená, softvér vytvorí súbor so zhrnutím demultiplexácie s názvom DemultiplexSummaryF1L1.txt.

- F1 v názve súboru zastupuje číslo prietokového článku.
- L1 v názve súboru zastupuje číslo pruhu.
- Výsledky demultiplexácie v tabuľke s jedným riadkom na dlaždicu a jedným stĺpcom na vzorku vrátane vzorky 0.
- Najčastejšie sa vyskytujúce sekvencie v čítaniach indexov.

Formát súboru FASTQ

FASTQ je textový formát súboru, ktorý obsahuje primárnu analýzu báz a hodnoty kvality na čítanie. Každý záznam obsahuje 4 riadky:

- Identifikátor
- Sekvencia
- Znamienko plus (+)
- Phredovo skóre kvality v ASCII + 33 kódovanom formáte

Identifikátor je formátovaný ako:

@Instrument:RunID:FlowCellID:Lane:Tile:X:Y ReadNum:FilterFlag:0:SampleNumber

Príklad:

```
@SIM:1:FCX:1:15:6329:1045 1:N:0:2
TCGCACTCAACGCCCTGCATATGACAAGACAGAATC
+
<>;##=><9=AAAAAAAA9#:<#<;<<<????#=</pre>
```

Doplnkové výstupné súbory

Nasledujúce výstupné súbory poskytujú doplnkové informácie alebo sumarizujú výsledky chodu a chyby analýzy. Hoci sa tieto súbory na vyhodnotenie výsledkov analýzy nevyžadujú, môžu sa použiť v prípade riešenia problémov. Všetky súbory sú umiestnené v priečinku zarovnania, ak nie je uvedené inak.

Názov súboru	Opis
AdapterTrimming.txt	Uvádza počet trimovaných báz a percentuálny podiel báz pre každú dlaždicu. Tento súbor je prítomný, len ak bolo trimovanie adaptérov pre daný chod zvolené.
AnalysisLog.txt	Záznam spracovania, ktorý opisuje každý krok počas analýzy aktuálneho priečinka chodov. Tento súbor neobsahuje chybové hlásenia. Nachádza sa na koreňovej úrovni priečinka chodov.
AnalysisError.txt	Záznam spracovania, ktorý uvádza chyby počas analýzy. Ak sa žiadne chyby nevyskytli, tento súbor bude prázdny. Nachádza sa na koreňovej úrovni priečinka chodov.
CompletedJobInfo.xml	Zapísaný po skončení analýzy, obsahuje informácie o chode ako dátum, ID prietokového článku, verziu softvéru a iné parametre. Nachádza sa na koreňovej úrovni priečinka chodov.
Checksum.csv	Obsahuje názvy súborov a unikátne hodnoty kontrolného súčtu pre určené aj neurčené súbory FASTQ, súbory BCL a súbor SampleSheetUsed.csv .
DemultiplexSummaryF1L1.txt	Oznamuje výsledky demultiplexácie v tabuľke s jedným riadkom na dlaždicu a jedným stĺpcom na vzorku.
GenerateFASTQRunStatistics.xml	Obsahuje súhrnnú štatistiku špecifickú pre príslušný chod. Nachádza sa na koreňovej úrovni priečinka chodov.

Priečinok analýz

Priečinok analýz obsahuje súbory vytvorené softvérom Správca lokálnych chodov.

Vzťah medzi výstupným priečinkom a priečinkom analýz je zhrnutý takto:

- Analýza v reálnom čase (RTA) počas sekvenovania zaplní výsledný priečinok súbormi vygenerovanými počas analýzy snímky, primárnej analýzy báz a vyhodnocovania kvality.
- RTA skopíruje súbory do priečinka analýz v reálnom čase. Potom ako RTA priradí skóre kvality ku každej báze každého cyklu, softvér zapíše súbor RTAComplete.xml do oboch priečinkov.
- Keď je prítomný súbor RTAComplete.xml, začne sa analýza.
- V ďalšom priebehu analýzy Správca lokálnych chodov zapíše výstupné súbory do priečinka analýz a potom skopíruje súbory späť do výstupného priečinka.

Priečinky zarovnania

Vždy, keď je analýza opätovne zaradená do frontu, správca lokálnych chodov vytvorí priečinok zarovnania Alignment_N, v ktorom N je poradové číslo.

Štruktúra priečinka

ÉÚdaje

Alignment_## alebo Alignment_Imported_##

[Časový údaj chodu]

DataAccessFiles

Fastq

- FastqSummaryF1L1.txt
- Sample1_S1_L001_R1_001.fastq.gz
- Sample2_S2_L001_R2_001.fastq.gz

.gz .gz

📁 Undetermined_S0_L001_R1_001.fastc
EUndetermined_S0_L001_R2_001.fastc
Prihlásenie
隌 BuildFastq0.stdout.txt
隌 BuildFastq1.stdout.txt
🖻 commands.txt
Grafy
🛅 AdapterCounts.txt
隌 AdapterTrimming.txt
隌 AnalysisError.txt
🛅 AnalysisLog.txt
🛅 Checkpoint.txt
🛅 Checksum.csv
CompletedJobInfo.xml
E DemultiplexSummaryF1L1.txt
🛅 GenerateFASTQRunStatistics.xml
📔 SampleSheetUsed.csv

Primárna analýza báz a odlišnosť indexov

Keď v prístroji MiSeqDx prebieha sekvenácia vzoriek, primárna analýza báz určuje bázu (A, C, G alebo T) pre každý klaster danej dlaždice alebo zobrazovacej oblasti prietokového článku v špecifickom cykle. Prístroj MiSeqDx využíva štvorkanálové sekvenovanie, ktoré vyžaduje štyri snímky na kódovanie údajov pre štyri bázy DNA, dve z červeného kanála a dve zo zeleného kanála.

Proces čítaní indexov pri primárnej analýze báz sa líši od primárnej analýzy báz počas iných čítaní.

Keď vyberáte indexy počas vytvárania chodov a indexy nespĺňajú požiadavky na odlišnosť, zobrazí sa varovanie pred nízkou úrovňou odlišnosti. Na zabránenie varovaniu týkajúceho sa nízkej úrovne odlišnosti vyberte sekvencie indexov, ktoré poskytujú signál v obidvoch kanáloch pre každý cyklus.

- Červený kanál A alebo C
- Zelený kanál G alebo T

Týmto procesom primárnej analýzy báz sa zabezpečí správnosť analýzy vzoriek s nízkym plexom. Viac informácií o sekvenciách vašich indexov nájdete v *príbalovom letáku Illumina DNA Prep With Enrichment Dx*.

Počas vytvárania chodu v aplikácii Local Run Manager (Správca lokálnych chodov) vyberiete počet vzoriek, ktoré chcete testovať. Softvér automaticky vyplní navrhované kombinácie indexov, ktoré spĺňajú požiadavky na odlišnosť indexov. Aj keď používanie navrhovaných kombinácií indexov UDP nie je nevyhnutné, odporúčame vám, aby ste ich použili.

História revízií

Dokument	Dátum	Opis zmeny
Dokument č. 200015661 v01	Máj 2022	Pridala sa adresa austrálskeho zadávateľa. Ujasnilo sa obmedzenie opisu vzorky.
Document č. 200015661 v00	Február 2022	Úvodné vydanie

Technická pomoc

Technickú pomoc vám poskytne oddelenie technickej podpory spoločnosti Illumina.

Webová lokalita:www.illumina.comE-mail:techsupport@illumina.com

Telefónne čísla oddelenia zákazníckej podpory spoločnosti Illumina

Región	Bezplatné	Regionálne
Severná Amerika	+1.800.809.4566	
Austrália	+1.800.775.688	
Belgicko	+32 80077160	+32 34002973
Čína	400.066.5835	
Dánsko	+45 80820183	+45 89871156
Fínsko	+358 800918363	+358 974790110
Francúzsko	+33 805102193	+33 170770446
Holandsko	+31 8000222493	+31 207132960
Hongkong, Čína	800960230	
Írsko	+353 1800936608	+353 016950506
Japonsko	0800.111.5011	
Južná Kórea	+82 80 234 5300	
Nemecko	+49 8001014940	+49 8938035677
Nórsko	+47 800 16836	+47 21939693
Nový Zéland	0800.451.650	
Rakúsko	+43 800006249	+43 19286540
Singapur	+1.800.579.2745	
Spojené kráľovstvo	+44 8000126019	+44 2073057197
Španielsko	+34 911899417	+34 800300143
Švajčiarsko	+41 565800000	+41 800200442
Švédsko	+46 850619671	+46 200883979
Taiwan, Čína	00806651752	
Taliansko	+39 800985513	+39 236003759
Ostatné krajiny	+44 1799 534000	

Karty bezpečnostných údajov (Safety data sheets, SDS) – k dispozícii na webovej lokalite spoločnosti Illumina na stránke support.illumina.com/sds.html.

Produktová dokumentácia – k dispozícii na stiahnutie z webovej lokality support.illumina.com.

Illumina 5200 Illumina Way San Diego, California 92122 USA +1 800 809 ILMN (4566) +1 858 202 4566 (okrem Severnej Ameriky) techsupport@illumina.com www.illumina.com

NA DIAGNOSTICKÉ ÚČELY IN VITRO

© 2022 Illumina, Inc. Všetky práva vyhradené.

Illumina Netherlands B.V. Steenoven 19 5626 DK Eindhoven Holandsko

Austrálsky zadávateľ

Illumina Australia Pty Ltd Nursing Association Building Level 3, 535 Elizabeth Street Melbourne, VIC 3000 Austrália

