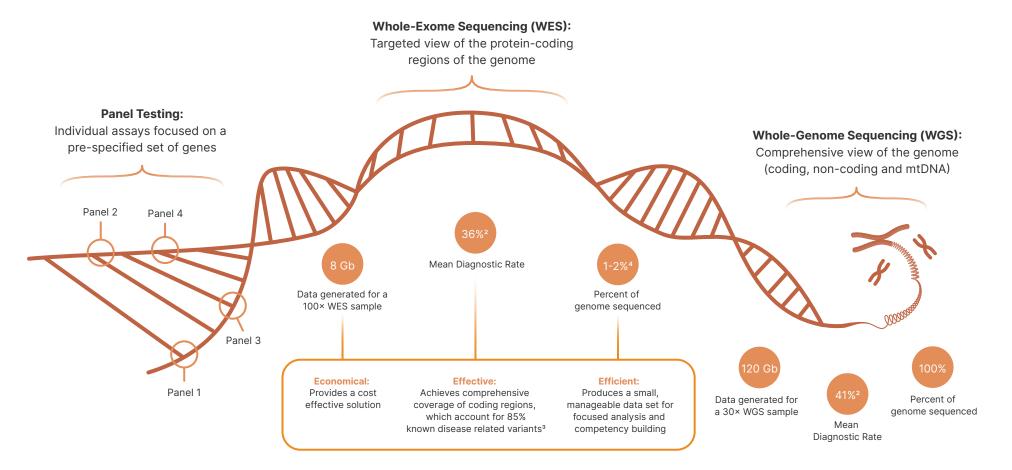
Your bridge to

GTACL	GTAC	TACGTACGTACG [.]	CGTACGTA	CGIR	JACO	GTACG	TAC	GTA ITAC	GTACGTACGTA	GTAC	CGTA	GTAC(ACGTACGTACGTAC	TACGT	j T A C G
GTACG	CGTAC	TACGTACGTACG'	CGTACGTA	CGTAC	CGTAC	TACGTA	i T A C	GTACHTAC	GTACGTACGTA	GTAC	CGTA	G T A C (ACGTACGTACGTAC	ACGTA	GTAC
TACG	C G T A /	TACG1	CGTA	GTACG	ACGT/	CGTAL	GTAC	GTAC	TACGT	GTAC	CGTA	G T A C (CGTA	CGTA	CGTAC
TACG1	(CGTA	TACG1	CGTA	ì T A C G	ACGT/	COTAC	, G T A (GTAC (T A C G T	GTAC	CGTA	G T A C (CGTA	°GTAC	
" A C G T	ACGT/	TACG1	CGTA	à T A C G	\CGTAL.		CGTA) T A C G	T A C G T	GTAC	CGTA	G T A C (CGTA	GTACL	ACGT
A C G T /	ACGT	TACGTACGTACG	CGTALUIA	CGTAC	°G T A C (âΤΑ.	CGTA	TACG	T A C G T	GTAC	CGTA	G T A C (CGTA	TACG	ACG
\ C G T A	í A C G "	TACGTACGTACG	CGTACGTA	CGTA	TACO	GTACGI.	ACGT/	TACGì	TACGT	GTACL	COTAL	G T A C (CGTA	° A C G T	
CGTA	TACG	TACG1	CGTACCTA	CGTAC		TACGTA	A C G T	A C G T 👘	TACGT	1990		GTAC(CGTA	\ C G T	
GTAU	iTAC(TACG1	CGTA	GTAC(CGTAC	ACGTAC	GTACGT	TACGT	11/100		GTAC	CGTA	C G T	
GTAC	GTAC	TACG1	CGTA	G T A C (ACGT	GTAC	FACGTAC	GTACGTA	TACG	(1997 - C) DATP	CGTA	C G T	
G T A C	GTAC	TACG1	CGTA	G T A C (ACGTA	JGTAC	, T A C G	CGTA	TA C			AC(CGTA	C G T	
TAC	GTA	TACGTACGTACGT	CGTA	ATAC	\CGTAC(a T A C G T A 👘	àTAC€	CGTAC	1000		Non Star			C G T	
TAC	G T 🖉	TACGTACGTACG7	CGTA	ì T A C G	°TAC(GTACGT	G T A C '	G T A C			111		CGTA	C G T	

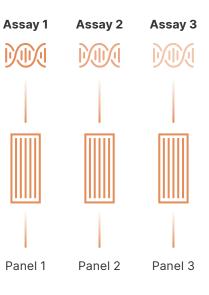

Discover complete workflow offerings and support for whole-exome sequencing.

Anxhela Gustafson, PhD Scientist Genomics Institute at Shriners Children's

GTACGTACGIA	TACGTACGTAL	ACGT	TACGTACGTAL	ACGTACGIA	GTACGTACGTACG
GTACGTACGTACG	TACGTACGTACGT	ACGT	TACGTACGTACG1.	GTACGTACGTAC	GTACGTACGTACG
GTAC PTACGI	TACG TACGTA	ACGT	TACG1 TACGTA	CGTAC' STACG	GTACC
GTAC CACGT	TACG CGTA	ACGT	TACGI CGTAC	ACGTA/ TACG	GTAC(
GTAC ACGT	TACG CGTA(ACGT	TACGI CGTAC	ACGTA	GTAC(
GTACurauGTACG	TACG ACGTA	ACGT	TACG1 GTAC(A C G T F	GTACGIACUIACS
GTACGTACGTAC	TACGTACGTACG	ACGT	TACG1 GTAC(ACGT/ ACGTACG1	GTACGTACGTAC(
GTACATAAGTACGY	TACGTACGTACG)	ACGT	TACG1 GTAC(ACGT/ ACGTACG1	GTACGTACGTAC(
GTAC ACGT/	TACG ACGTA	ACGT	TACGI GTAC	ACGT/ TACG1	GTAC(
GTAC ACGTA	TACG \CGTA	ACGT	TACGI SGTAC	ACGTA TACGI	GTAC(
GTAC ACGT/	TACG CGTA	ACGT	TACGI .CGTAC	ACGTA /TACG1	GTAC(
GTAC GTACGT	TACG CGTA	ACGT	TACG1ACGTA	CGTAC. JGTACG1	GTACC
GTACGTACGTACG'	TACG CGTA	ACGT	TACGTACGTACG ⁷	`GTACGTACGTACG1	GTACGTACGTACG'
GTACGTACGT*	TACG CGTAL	ACGT	TACGTACGTAC	TACGTAC' ACGI	GTACGTACGTACG

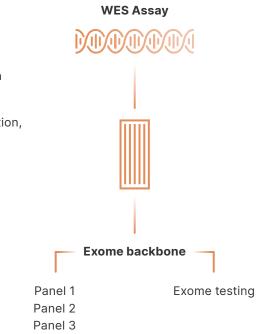
from panels to new frontiers of the genome

Exome sequencing is an effective, economical, and efficient approach when whole-genome sequencing is not accessible.


Single platform for

GTACGTACGTAC	FACGTA	GTAC	\CGTACG	TAUL	CGTA	GTACGTACGTAC	GTA	CGTAL	⊿CGT/	CGTA	
GTACGTACGTAC	TACGTA.	GTAC	ACGTACG	TACGTA	CGTA	GTACGTACGTAC	, ACGTA	CGTACG	, TACGT	CGTAC	
GTAC	FACGTAC	GTAC	A C G T A	CGTAC	CGTA	GTAC	TACG	TACGT	GTAC(TACG	
GTAC	FACGTAC	GTAC	\CGTA	GTAC\	CGTA	GTAC	TACG	V C C T	GTAC	TVCC	
GTAC	FACG ACG	GTAC	A C G T A	GTACG	CGTA	GTAC	TACG1.		G T A C G .		
GTACGTACGTA(FACG' \CGT	GTAC	A C G T A) T A C G	CGTA	GTACGTACGTA(ACGTA	CGi.	TACGT	1C u .	
G T A C G T A C G T A (FACG' CGT	A GTAC	A C G T A) T A C G	CGTA	GTACGTACGTA(° G T A	CGTAC	`¢GT/	ACGTAL	
GTAC	「ACG' `GT	ACGTAC	A C G T A	J T A C G	CGTA	GTAC		GTACGI		CGTACG	
GTAC	FACG' GT	ACGTAC	A C G T A	GTAC(CGTA	GTAC		TACGT,		TACG1	
GTAC	TACG T	ACGTAC	A C G T A	GTAC(CGTA	GTAC	GIACU	A C G T /	CGIAL	T A C G 1	
GTAC	TACG 7	ACGTAC	A C G T A	CGTAC	CGTA	GTAC	TACG	ACGT/	🗅 G T A C 🔬 👘	TACG7	
GTACGTACGTAC	ſ ſ A C G '	A C G T A C	ACGTACG	TACGT/	CGTACGTACGTA	GTACGTACGTAC	TACGTA	CGTACG7	GTACGT/	A C G T A C P	nonal designs
GTACGTACGTAC	FACG	CGTAC	IC G T A C G	TACC	CGTACGTACGT	GTACGTACGTAC	<u> </u>	CGTAC	ACGT/	ACGT#	panel designs

Approximately 250 new genes with disease-causing variation are added to the literature annually.¹ This rapid rate of genetic discovery can render current gene panels outdated and incomplete. The subsequent need to update multiple panels on a regular basis can be both labor-intensive and costly. By adopting a whole exome backbone, labs can deliver versatile and comprehensive virtual panels, with simplified workflows and decreased sequencing costs.


Panel testing

- Limited test menus
- Complicated multi assay
 panel workflows
- Costly and labor-intensive panel update workflow
- Finite ability to discover new genotype-phenotype associations
- Limited re-analysis options

Whole-exome sequencing

- Optimized lab efficiency via assay consolidation
- Single wet lab assay validation, frequent query
- Simplified workflow for panel updates
- Enhanced ability for new discoveries
- Immediate reflex analysis capabilities

All the parts and support from a single

GTACGTACGTACGT.	CGTACGTA	CGIN	CGTA(' A C G T	ACGT	ACGTA	ACGTACGTACGTAC	FACGTACGTACG1	CGTACG	FACGI.	
GTACGTACGTACGT.	CGTACGTA	CGTACL	CGTA(' A C G T	á T A C G T	ACGTAC	ACGTACGTACGTAC	FACGTACGTACG1	CGTACG	FACGTAL	
i T A C G	CGTAC	RTACG	CGTA(' A C G T	GTAC	RTACG	LCGTA	FACG1	CGTA(^GTACG	
i T A C G	CGTAC	TACG1	CGTA(' A C G T	GTAC	TACC	CGTA	FACG1	CGTA(TACG\	
i T A C G	CGTAC	TACG	CGTA(' A C G T	GTACG.		ICGTA	FACG1	CGTA(TACGT	
i T A C G	CGTAC	J G T A C F	CGTA(' A C G T	TACGT	ACu	CGTA	FACGTACGTACG	CGTA(⊺ A C G T	
i T A C G	CGTACGTA	CGTA	CGTA(' A C G T	° C G T	ACGTA	ICGTA	F A C G T A C G T A C G	CGTA(Γ A C G T	
i T A C G	CGTACCTA	CGTAC	CGTA(' A C G T		ACGTACG	CGTA	TACGTICCTICC	CGTA(Γ A C G T	
i T A C G	CGTAC	ì T A C G	CGTA(' A C G T		R T A C G	CGTA	TACG1	CGTA(F A C G T	
i T A C G	CGTAC	TACG	CGTA(Í A C G T	CUTAL	TACG	I CGTA	TACG1	CGTA(, TACG1	
i T A C G	CGTAC	TACG	CGTAC	F A C G T	CGTAC	TACG	CGTA	FACG1	CGTA(, G T A C G	
i T A C G	CGTAC	TACG	GTACGI	A C G T A C G 🐪	GTACGI	M U G T A C O	ICGTA	FACGTACGTACGT	CGTACG	FACGTAC	nor
i T A C G	CGTAC	TACG		ACGTAC		ACGTA	CGTA	FACGTACGTACGT	CGTACG	TACGT	par

Library Preparation

Illumina DNA Prep with Exome 2.5 Plus Enrichment

Combines on-bead tagmentation with built-in library normalization and hybridization enrichment allowing for:

- High level performance with only 50M PE reads
- ~90% Padded Read Enrichment and ~98% Uniformity of Coverage
- ~99% SNV Precision and ~97% SNV recall

Illumina library prep automation protocols are compatible with Beckman Coulter, Eppendorf, Hamilton, PerkinElmer, Tecan, and more. Exome 2.5 Plus may require minor modifications.

Features:

- Flexible and direct DNA input
- Fast, efficient, and reproducible enzyme tagmentation
- Comprehensive exome panel content
- >90% coverage of targets across clinically relevant databases
- Rapid turnaround time from sample to enriched, sequence-ready libraries

NextSeq[™] 550 :

Cost-effective benchtop analyzer with:

- ~120 Gb output range
- 400M maximum single-end reads
- 2×150 bp maximum read length
- 5-16 exomes per run*

NextSeq 550 Dx may be used in RUO mode

NovaSeq[™] 6000:

Automation- and configuration-friendly system built for deep and broad coverage with:

- 6 Tb maximum output range
- 20B maximum single-end reads
- 2×250 bp maximum read length
- 24-500 exomes per run*

NovaSeq 6000 Dx may be used in RUO mode

Sequencing

NextSeg 1000/2000:

Easy-to-use cartridge-based platform with:

rtner

- ~360 Gb maximum output range
- 1.2B maximum single-end reads
- 2×300 bp maximum read length
- 4-48 exomes per run*

Illumina DRAGEN™ Enrichment Pipeline

Accurate, efficient secondary analysis solution for comprehensive variant calling, including SNV, CNV, and SV

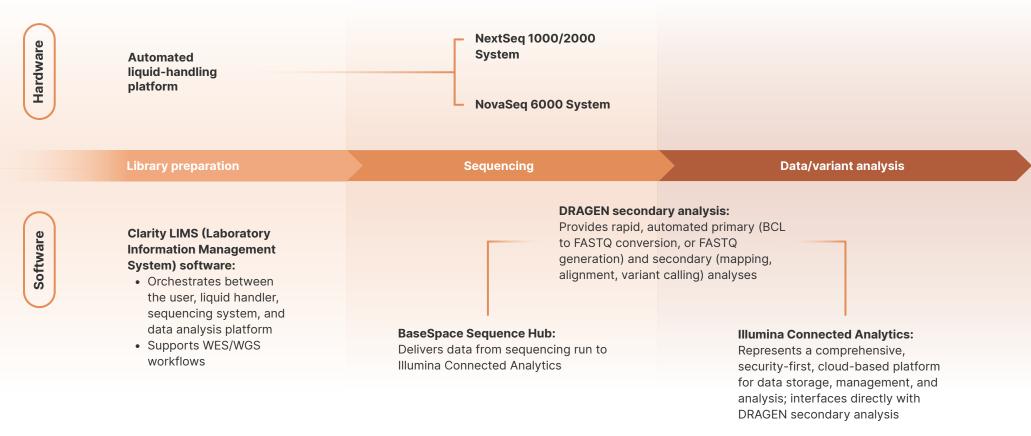
NovaSeq X series:

Powerful system for ultra-high-throughput projects:

- 8 Tbt -16 Tbt maximum output range
- 26Bt 52bt single-end reads
- 2×150 bp maximum read length
- 40-1500 exomes per run*

*depending on flow cell type and desired read depth † NovaSeq X System ‡ NovaSeq X Plus System Note: Suggested read-length for WES is 2×101

Emedgene


Enable high efficiency tertiary analysis for germline research WES, with the support of explainable AI (XAI) and user-configured automation to maximize scale potential

Data Analysis

ACGTACGI. GTACGTACGIA	C G T A C C G T A C		CGTACGT	TACGTACGTAL	GTACG Gtacg	A C G T A A C G T A	FACGTACGTACGT	CGTAC GTACG	JGTAC CGTAC	TACGT TACGT	ITACGI Itacgia	G T A C G T A C		ACG15 ACGTAC
CGTAC GTACE	CGTAC	CGTACGT	GTACGT	TACG TACGTA	GTACG	ACGTA	TACGT	TACGI	ACGT/	TACGT	ìTACGTA.	GTAC	CGTAC	GTACG
CGTA(GTACG	CGTAC	ICGT/CGT/ AC	GACGT	ITACG CGTA	3 T A C G	ACGTA	T A C G T	TACGT.	/ A C G T	TACGT	ì T A C G T A C	G T A C	CGTA/	TACG
CGTAC	CGTAC	ICGTACGTA AC	GACGT	itacg (Cgta)	à T A C G	ACGTA	ſ A C G T	\CGTA	TACG	TACGT	ITAC(TACE	G T A C	ACGTA	
`GTACGTA	CGTAC	ICGTA CGTA IAC	CC ACGT	ITACG ACGTA	G T A C G	ACGTA	「 A C G T	CGTAL	à t a c í	TACGT	itac(tacg.	G T A C	A C G T A	
TACGTACG1,	CGTAC	ICGTA GTA TAC	C A C G T	itacgtacgtacgt/	G T A C G	ACGTA	TACGTACGTACGT	GTAC	GTAC	TACGT	itac(acgi	GTAC	ACGT/	ACGTACG
PGTACGTAC	CGTAC	ICGTA GTAC TAC	C ACGT	itacgtacgtac ^e	G T A C G	ACGTA	TACGTACGTACGT	TAC	GTA	TACGT	itac(cgt	A GTAC	ACGT/	ACGTACG
° G T A C G	CGTAC	ICGTA STACSTAC	ACGT	i T A C G	G T A C G	ACGTA	T A C G T	TAC	GT	TACGT	itace ?gt	AVGTAC	A C G T A	TACG
ì T A C G	CGTAC	ICGTA ITACGTA(' A C G T	i T A C G	G T A C G	ACGTA	Γ A C G T	ΓAC (GT	TACGT	itace gt	ACGTAC	ACGTA	TACG
ACGTA TACG	CGTAC	ICGTA TACGTA	ACGT	i T A C G	G T A C G	ACGTA	T A C G T	ΓAC (GT	TACGT	itace it	ACGTAC	\CGTA	i T A C G 1
CGTAL GTACG	CGTAC	ICGTA TACGTA	ACGT	i T A C G	GTACG	ACGTA	T A C G T	[AC	GT	TACGT	itace v	ACGTAC	C G T A C 👡	JGTACG
`GTACGTACGTAC	CGTAC	ICGTA TACGT/	ACGT	i T A C G	GTACGTACGTACG	ACGTA	Γ A C G T	ΓAC (GT	TACGT	ìTAC (ACGTAC	`G T A C G T	ACGTACG
TACGTACGT	CGTAC	CGTA ACGT	ACGT	ITACG	STACGTACGTACG	ACGTA	TACGT	Γ A C I	ят	TACGT	ITACE	CGTAC	* 4 C G T	

WES workflows with Illumina Genomics Architecture (IGA)

IGA is a standardized, modular, and flexible framework that streamlines the integration and deployment of NGS by implementing automation-compatible, sample-to-answer workflows through a series of hardware and software.

For more information, visit: https://support-docs.illumina.com/SHARE/IlluminaGenomicsArchitecture/Content/SHARE/FrontPages/IGA.htm

Branch out with whole-exome sequencing

Trust Illumina to be your single partner for providing:

- Reagents, instrumentation, and software for data analysis and interpretation
- Fast, easy-to-use, robust assays for high-quality, reproducible results
- World class support for every element of your workflow

Learn more about the power of whole-exome sequencing here:

Scan QR code for more information

https://www.illumina.com/areas-of-interest/genetic-disease/ rare-disease-genomics/targeted-rare-disease-seq.html

References

- 1. Seaby EG, Rehm HL, O'Donnell-Luria A. Strategies to Uplift Novel Mendelian Gene Discovery for Improved Clinical Outcomes. *Front Genet*. 2021;12. doi:10.3389/fgene.2021.674295.
- 2. Clark MM, Stark Z, Farnaes L, et al. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. *NPJ Genom Med.* 2018;3(1). doi:10.1038/s41525-018-0053-8 2.
- 3. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. *Trends Genet*. 2014;30:418-426. doi: 10.1016/j.tig.2014.07.001.
- 4. Warr A, Robert C, Hume D, Archibald A, Deeb N, Watson M. Exome Sequencing: Current and Future Perspectives. *G3: Genes/Genomes/Genetics*. 2015;5(8):1543-1550. doi:10.1534/g3.115.018564.

illumina

1.800.809.4566 toll-free (US) | +1.858.202.4566 tel techsupport@illumina.com | www.illumina.com

© 2023 Illumina, Inc. All rights reserved. All trademarks are the property of Illumina, Inc. or their respective owners. For specific trademark information, see www.illumina.com/company/legal.html. M-GL-01485 v2.0