Illumina TruSight[®] HLA Sequencing Panel Automated on the Biomek FX^P HLA SP Liquid Handler

Zach Smith, MS, Senior Applications Scientist, Beckman Coulter, Inc.

Nate Baird, PhD, Scientist, Illumina

Brad Baas, PhD, Senior Scientist, Illumina

Introduction

The Human Leukocyte Antigen (HLA) system consists of a collection of 21 genes located on chromosome 6 that display high levels of polymorphism, resulting in over 12,500 HLA alleles characterized in the IPD-IMGT/HLA database as of January 2015.¹ The variability observed in the HLA system allows the immune system to discriminate between host cells, nonhost cells, infected cells, and malfunctioning cells. In addition, certain HLA alleles have been shown to be associated with a number of autoimmune disorders including Type 1 Diabetes, rheumatoid arthritis, and inflammatory bowel diseases² as well as

certain cancers.³ Therefore, HLA typing has a number of valuable applications, including reducing

TruSight® HLA Sequencing Panel

1000

the risk of transplant rejection by matching transplant recipients with donors that are close HLA matches in addition to providing a potential diagnostic tool for assessing the risk of certain HLA-associated disorders.

In this technical note, we describe the automation of the Illumina TruSight® HLA Sequencing Panel on the Beckman Coulter Biomek FX^P HLA SP. An application specific configuration of the Biomek FX^P Dual Mutli-96 Span-8 automated liquid handler (Figure 8). DNA libraries prepared for next-generation sequencing (NGS) using the TruSight® HLA

Sequencing Panel enable high-resolution, unambiguous HLA typing with a single assay. Briefly, three Class I HLA loci (HLA-A, -B, and -C) as well as eight Class II HLA loci (HLA-DPA1, -DPB1, -DQA1, -DQB1, and -DRB1/3/4/5) are amplified using locus specific primers. These amplicons, which range from 2.6kb to 10.3kb in size, are normalized, tagmented, and amplified into uniquely indexed libraries for each locus in each genomic DNA sample. Finished libraries are then pooled and loaded onto the Illumina MiSeq[®] system for sequencing, with the option of using either a single MiSeq[®] v2 standard flow cell or MiSeq[®] v2 Nano flow cell, depending on the number of samples per run.

The Biomek FX^P TruSight® HLA automation method standardizes library preparation and significantly reduces manual labor. Up to 192 Illumina TruSight® HLA libraries can be generated from 24 genomic DNA samples in approximately 11 hours. By limiting the need for

Biomek FXP Dual- Arm Multi-96 and Span-8 Liquid Handler

user interactions, the automated method reduces the incidence of costly pipetting errors and provides for more uniform sample processing. The resulting library pool is ready to load directly onto the MiSeq® Reagent Cartridge while advanced data handling features speed the preparation of the required Sample Sheet by reporting out the indexing i5 and i7 primers associated with each library.

For added convenience, the Biomek FX^P TruSight[®] HLA automation method is preconfigured to employ fully skirted PCR plates or non-skirted PCR plates to accommodate a range of off-deck thermocyclers. For greater hands-off time, the method also includes the option of utilizing an integrated Biometra TRobot thermocycler for on-deck incubations and thermocycling. The method employs individual Span-8 probes to deliver enzyme and reagent transfers while steps involved in sample cleanups using Sample Preparation Beads, are performed using the multi-channel 96 pipetting head. This provides significant time and consumables savings. On-deck peltier units or chill-blocks ensure automation plates are kept cool during master mix transfers. The method also incorporates all recommended stop points described in the Illumina TruSight® HLA

Sequencing Panel Library Preparation Guide to allow users the maximum amount of flexibility in planning their experiments.

Protocol

The Biomek FX^P TruSight® HLA automation method utilizes the Beckman Coulter Biomek FX^P HLA SP (hereafter Biomek FX^P) in conjunction with the Illumina TruSight® HLA Sequencing Panel Library Reference Guide (15056536 Rev. A). Automation consumables, instrument configuration, and other details can be found at the end of this document. The automation method consists of six submethods operated by a single HTML-driven User Interface (UI). The Illumina TruSight® HLA Sequencing Panel workflow can be seen in Figure 1. The automation workflow can be seen in Figure 2.

The automation method utilizes an HTML-driven UI that offers users a number of different options for customizing their workflow (Figure 3). For scheduling flexibility, the UI also allows the user to select between any one of the six sub-methods that make up the automation method. In each sub-method, the user can select to process any number of genomic DNA samples between 1 and 24. Depending on the sub-method selected and the number of genomic DNA samples being processed, the UI will update to include features specific to the sub-method automatically. For example, when the PCR sub-method is selected, the user is prompted to select which Nextera® XT v2 primer sets (A, B, C, or D) will be used for each Nextera® PCR Plate (NPP). This information is then used not only to populate the HTML-driven reagent calculator, but also to generate two .csv files that record which i5/i7 primer combinations were delivered to each well of the NPP plates. These files can then be used to generate the Sample Sheet for the sequencing run in Illumina Experiment Manager. The PCR sub-method also gives the user the option to perform the library amplification using an on-deck TRobot thermocycler or to use an off-deck thermocycler. Another sub-method with multiple options in the UI can be found in the Normalization, Tagmentation, and Tagmentation Cleanup sub-method, where the tagmentation incubation can be performed either on an ondeck TRobot thermocycler or an off-deck thermocycler. Finally, the Library Pooling submethod offers the user the choice of whether to pool the libraries or to pool, dilute, and denature the pooled libraries. The number of library pools is defined by the type of MiSeq[®] flow cell being used (either Version 2 Standard or Version 2

Nano) as outlined in the Illumina TruSight® HLA Sequencing Panel Library Reference Guide. If the user chooses to dilute and denature the resulting library pool(s), the resulting denatured library pool(s) can be loaded directly onto the MiSeq® Reagent Cartridge.

In addition to the UI, the automation method provides an HTML-driven Reagent Calculator (Figure 4) that provides the user with the final volumes of all reagents and master mixes required on the deck as well as instructions on how to generate the various master mixes based upon the number of samples to be processed and which sub-method is selected.

Beckman Coulter	
Illumina® TruSight® HLA Sequencing Panel Library Preparation	
Automated by Beckman Coulter, Inc	
Select which method to run: HLA Amplicon Generation	
Enter Number of Samples: 24 1-24	
Check to Run Partial Columns 🛛	
Let's Get Started	

Figure 3: Biomek FX^P TruSight® HLA automation method UI.

Experimental Design and Results

Twenty-three genomic DNA samples obtained from the International Histocompatibility Working Group (IHWG)⁴ were quantified using Quant-iT[™] Picogreen (Life Technologies), normalized to a final concentration of 10ng/µl, and arrayed in a 96 well BioRad Hard-Shell PCR plate (BioRad). The HLA amplification reactions were set up with the Biomek FX^P using the HLA Amplification sub-method and the HLA amplification reactions were performed in BioRad S1000 thermocyclers. A negative

For Research Use Only. Not for use in diagnostic procedures.

control sample, ultrapure water, was also included. Following amplification cleanup using the using the HLA Cleanup sub-method, selected samples were assayed using the Bioanalyzer 2100 with a DNA 12000 chip (Agilent), the results of which are presented in Figure 5. The purified HLA amplicons were stored overnight at 4°C.

Using the Normalization, Tagmentation, and Tagmentation Cleanup sub-method in conjunction with the PCR sub-method, the HLA amplicons were normalized, tagmented, cleaned, and used as template for the library amplification reactions. Thermocycling was performed off-deck in BioRad S1000 thermocyclers and reactions were allowed to hold at 10°C overnight. The following day, the PCR Cleanup sub-method was used to purify the HLA amplicon libraries. Selected samples were diluted 1:10 in ultrapure water and assayed on the Bioanalyzer 2100 using a DNA High Sensitivity chip (Agilent), the results of which are presented in Figure 6. 192 libraries were pooled, diluted, and denatured using the Library Pooling sub-method and a 2 x 251 paired end sequencing run was performed using a 500-cycle MiSeq[®] v2 Standard Reagent Kit.

Three 23-sample runs with a negative control sample were performed using the automation method and the workflow described above. FASTQ reads for each run were transmitted to Illumina for analysis using Conexio Assign v1.0.0.719 (Beta 2) (Conexio Genomics) software with default parameters. The sample data

Figure 4: Biomek FX^P TruSight* HLA automation method reagent calculator for the HLA Amplification sub-method.

HLA Amplicon Generation Reagent Information							
			DNASample	s			
	For each sam	ple, place 45ul o	f gDNA per well, start	ting in well A1 and p	roceding down the	first column.	
ube Rack f	or HLA Prin	ners	mers				
Row/Column	Colur	nn 1	Column 2-12				
Row A	HLA-A prime	r mix: 150 µl	blank				
Row B	HLA-B prime	r mix: 150 µl	blank				
Row C	HLA-C primer mix: 150 ul		blank				
Row D	DPA1 primer mix: 150 ul		blank				
Row E	DPB1 primer mix: 150 ul		blank				
Row F	DQA1 primer mix: 150 µl		blank				
Row G	DRB primer mix: 150 µl		blank				
Row H	DQB1 primer mix: 150 µl		blank				
4-Position F	Reagent Bl	ock	olumn 2	Column 3	Column 4	Column 5	Column 6
HLA PCR M	ix: 1030 µl	HLA PC	R Mix: 1030 µl	blank	blank	blank	blank
HLA PCR M	ix: 1030 µl	HLA PC	R Mix: 1030 µl	blank	blank	blank	blank
HLA PCR M	ix: 1030 µl	HLA PC	R Mix: 1030 µl	blank	blank	blank	blank
HLA PCR M	HLA PCR Mix: 1030 µl HLA PC		R Mix: 1030 µl	blank	blank	blank	blank
		411	To make the HLA 5150 µl µl of MasterAmp Lo 2679 µl of Nucle	PCR Master Mix of HPM ong Range Polyme ase Free Water	: erase		

generated across the three automated method runs was highly reproducible when compared with the manual sample data generated internally at Illumina as well as with the known HLA types of the IHWG genomic DNA samples. As shown in Figure 7, 99% of the HLA allele typing results generated with the automated method matched HLA typing results generated with the manual preparation of TruSight® HLA libraries as well as with known reference alleles in the 410 alleles that were analyzed. Examination of negative controls showed that all three runs were devoid of contaminating sequences from neighboring wells, indicating that the automation method does not produce sample cross-contamination.

Figure 7: Comparison between automated TruSight* HLA for Biomek FXP automation method and manual TruSight* HLA sequencing data.

	Total	HLA-A	HLA-B	HLA-C	HLA-DPA1	HLA-DPB1	HLA-DQA1	HLA-DQB1	HLA-DRB1	HLA-DRB3	HLA-DRB4	HLA-DRB5
Allele Reproducibility	99%	99%	98%	100%	100%	100%	100%	100%	99%	97%	96%	92%
Alleles Analyzed	410	46	46	46	46	46	46	42	46	22	16	8
Bases Analyzed	6,822,330	486,312	369,012	463,128	1,349,088	961,584	904,452	955,962	736,368	275,352	222,096	98,976
Bases Mismatched	18	4	8	0	0	0	0	0	2	2	0	2
Samples Analyzed	23											

Conclusion

The Biomek FX^P TruSight[®] HLA automation method streamlines the intensive workflow of the Illumina TruSight[®] HLA Sequencing Panel, while providing highly reproducible and accurate HLA typing results with a complete sample to sequence workflow.

References

1. Robinson J, Halliwell JA, Hayhurst JH, Flicek P, Parham P, Marsh SGE. The IPD and IMGT/HLA database: allele variant databases Nucleic Acids Research (2015) 43:D423-431

2. Fernando MMA, Stevens CR, Walsh EC, De Jager PL, Goyette P, et al. (2008) Defining the Role of the MHC in Autoimmunity: A Review and Pooled Analysis.PLoS Genet 4(4): e1000024. doi: 10.1371/journal. pgen.1000024

3. Madeleine MM, Johnson LG, Smith AG, Hansen JA, Nisperos BB, Li S, et al. Comprehensive analysis of HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 loci and squamous cell cervical cancer risk. Cancer Res (2008) 68(9):3532–910.1158/0008-5472.CAN-07-6471

4. www.ihwg.org

Software

Conexio Assign v1.0.0.719 (Beta 2) www.conexio-genomics.com

Reagent Details (if applicable)

ALPs/ Devices Required

PART NUMBER	QTY	MANUFACTURER	DESCRIPTION
719948	1	Beckman Coulter, Inc.	ALP, High-Density, 12-Position, 4 x 3
379448	1	Beckman Coulter, Inc.	ALP, Shaking, Orbital, Single-Position
719357	2	Beckman Coulter, Inc.	ALP, Standard Single-Position
A93938*	2	Beckman Coulter, Inc.	Static Peltier ALP
719590	1	Beckman Coulter, Inc.	Waste, Span-8, ALP
719356	1	Beckman Coulter, Inc.	Disposable Tip Loader ALP
719654	1	Beckman Coulter, Inc.	ALP, Tip Wash, 8-Channel
719363	1	Beckman Coulter, Inc.	Wash Station including pump and tubes
719366	1	Beckman Coulter, Inc.	Biomek FX Device Controller
Contact Beckman Coulter, Inc.	1	Biometra	(Optional) Biometra T-Robot for On-Deck incubations

*Method can be configured to use a chill-block on a 1X1 in place of one Static Peltier ALP.

Deck configuration of the Biomek FX^P Dual Arm Multi -96 and Span 8 Liquid Handler.

Labware Required

MANUFACTURER PART #	PER 24 SAMPLE RUN	MANUFACTURER	MANUFACTURERS NAME
B01124	5	Beckman	Biomek Span-8 P1000 Tips, Pre-sterile with Barrier
379503	15	Beckman	Biomek Span-8 P250 Tips, Pre-sterile with Barrier
A21586	15	Beckman	Biomek P50 Tips, Pre-sterile with Barrier
717256	6	Beckman	Biomek AP96 P20 Tips, Pre-sterile with Barrier
717253	8	Beckman	Biomek AP96 P250 Tips, Pre-sterile with Barrier
372790	4	Beckman	Quarter Reservoir
534681	3	Beckman	Reservoir, Half
372788	2	Beckman	Quarter Reservoir, Divided by Length
372795 	1	Beckman	Frame for Reservoirs
4900 	1	ThermoScientific	Empty Latch Racks for 500 µl ScrewTop Tubes
A32782 ‡	1	Beckman	Agencourt® SPRIPlate® 96R - Ring Super Magnet Plate
A83054 ‡	1	Beckman	BCI Tube Block
AB-1127	8	Fisher Scientific	Abgene 96-Well Storage Plate, Square Well, 1.2 mL
16466-042	14	VWR	2mL SuperClear™ Screw Cap Microcentrifuge Tubes - Conical Bottom
HSP-9641	12	Bio-Rad	Hard-Shell® Thin-Wall 96-Well Skirted PCR Plates
MSL-2022*	4	Bio-Rad	Arched Auto-Sealing Lids
4312063** ≠	4	Bio-Rad	MicroAmp® Splash-Free 96-Well Base
HSS-9641**	12	Bio-Rad	Hard-Shell® Thin-Wall 96-Well Non Skirted PCR Plates
C5064 ‡	1	Acme Automation	ReactorAdaptor96Flat

* Optional: for On-Deck Thermo cycling only **Non-skirted plate option only, not compatible with TRobot 🛛 🕇 One time purchase

User-Supplied Consumables

PART NUMBER	MANUFACTURER	DESCRIPTION
AB00138-01000	American Bioanalytical	Ethanol
FC-142-1001	Illumina	Illumina TruSight® HLA Sequencing Panel
FC-131-200(1,2,3,4)	Illumina	Nextera® XT Index Kit v2 (Set A, B, C, or D)
MS-102-2003 or MS- 103-1003	Illumina	MiSeq® Reagent Kit v2 (500 cycles) or MiSeq® Reagent Nano Kit v2 (500 cycles)

Auxiliary Equipment for QC Testing

PART NUMBER	MANUFACTURER	DESCRIPTION
G2940CA	Agilent Technologies	Agilent 2100 Bioanalyzer
5067-1508	Agilent Technologies	Agilent DNA 12000 Kit
5067-4626	Agilent Technologies	Agilent High Sensitivity DNA Kit
SY-410-1003	Illumina	MiSeq® System

© 2015 Beckman Coulter Life Sciences. All rights reserved.

Beckman Coulter, the stylized logo, BIOMEK are registered trademarks of Beckman Coulter, Inc.

Beckman Coulter, the stylized logo, BIOMEK are registered with the USPTO. All other trademarks are the property of their respective owners.

The PCR process is covered by patents owned by Roche Molecular Systems, Inc. and F. Hoffman La Roche, Ltd.

Illumina, TruSight[®], the Illumina logo, and the pumpkin orange color are trademarks of Illumina, Inc. and/or its affiliate(s) in the U.S. and/or other countries.

For Research Use Only. Not for use in diagnostic procedures.

For Beckman Coulter's worldwide office locations and phone numbers, please visit www.beckmancoulter.com/contact

