

TruSeq[®] Targeted RNA Workflow on the MiniSeq[™] System

illumina

This checklist supports the following workflow choices.

Sequencing Instrument:	MiniSeq System
Setup Option	Local Run Manager
Library Preparation Kit:	TruSeq Targeted RNA Expression
Indexing:	Dual Indexing
Reagent Kits:	MiniSeq Kit
Analysis Workflow:	Targeted RNA
Analysis Software:	Local Run Manager

MiniSeq sequencing using TruSeq Targeted RNA Expression libraries

Set Run Parameters

- \Box 1 Log in to Local Run Manager. Click Create Run, and select Targeted RNA. $\square 2$ Enter a run name that identifies the run. 3 \Box 4 [Optional] Enter a run description. $\Box 5$ Enter the number of cycles for the run. □ 6 Click **Import Manifests**. \Box 7 Navigate to the manifest file. $\square 8$ Enter a unique sample ID. \Box 9 Enter a sample name. \Box 10 [Optional] Enter a sample description. \Box 11 Select an Index 1 adapter. \Box 12 Select an Index 2 adapter. \Box 13 Select a manifest file. \Box 14 Enter a list of gene names to be used for normalization. Separate each gene name with a semi-colon.
- □15 Click Save Run.

Synthesize cDNA

- $\Box 1$ Vortex RCS1 for 5 seconds.
- \Box 2 Centrifuge at 600 × g for 5 seconds.
- Dilute according to your input RNA:
 Dilute 50 ng intact total RNA with nuclease-free water to 5 µl.
 - ▶ Dilute \geq 200 ng degraded RNA with nucleasefree water to 3 µl.
- \Box 4 Add diluted RNA to a plate:
 - Add 5 μl diluted intact total RNA to the CDP1 plate.
 - Add 3 µl diluted degraded RNA to the CDP plate.
- □5 Combine the following volumes in a 1.7 ml microcentrifuge tube. Multiply each volume by the number of samples being prepared.

Reagent	Intact Total RNA Volume (µl)	Degraded RNA Volume (µl)
RCS1	4.4	4.4
ProtoScript II Reverse Transcriptase	1.1	2.2
10X DTT (0.1M)*	0	1.1
Total volume per pool	5.5	7.7

- * Included with ProtoScript II Reverse Transcriptase reagent.
- $\Box 6$ Invert to mix.
- \Box 7 Centrifuge at 600 × g for 5 seconds.
- $\Box 8$ Distribute evenly into an 8-tube strip.
- □9 Add the volume for your plate:
 Add 5 µl to the CDP1 plate.
 Add 7 µl to the CDP plate.
- \Box 10 Shake at 1600 rpm for 20 seconds.
- \Box 11 Centrifuge at 280 × g for 1 minute.

Thu Jan 7 18:29:10 2016 ILLUMINA PROPRIETARY

illumina

□12 Place on the thermal cycler and run the CDNASYN1 or CDNASYN2 program.

SAFE STOPPING POINT

If you are stopping, seal the plate and store at 2°C to 8°C for up to 7 days. Alternatively, leave on the thermal cycler overnight.

Hybridize Oligo Pool

- □1 Combine the following volumes in a 1.7 ml microcentrifuge tube. Multiply each volume by the number of reactions being prepared.
 - Top (5.5 μl)
 - Additional TOP or TE buffer (5.5 μl)
- $\Box 2$ Vortex for 5 seconds.
- \Box 3 Centrifuge at 600 × g for 5 seconds.
- $\Box 4$ Distribute into an 8-tube strip.
- $\Box 5$ Add 10 µl to the CDP or CDP1 plate.
- $\Box 6$ Shake at 1600 rpm for 20 seconds.
- \Box 7 Incubate at room temperature for 1 minute.
- $\square 8$ Vortex OB1 for 5 seconds.
- $\Box 9~$ Add 30 μl OB1 to the CDP or CDP1 plate.
- \Box 10 Shake at 1600 rpm for 1 minute.
- □11 Place on the thermal cycler and run the ANNEAL program.
- \Box 12 Centrifuge briefly.

Wash, Extend, and Ligate Bound Oligos

- $\Box 1$ Transfer all supernatant to the HYP plate.
- $\Box 2$ Place on a magnetic stand until liquid is clear.
- \Box 3 Remove and discard all of the supernatant.
- $\Box 4$ Move from the magnetic stand to a bench.
- $\Box 5$ Add 100 µl AM1 to each well.
- $\Box 6$ Shake at 1800 rpm for 2 minutes.
- \Box 7 Centrifuge at 280 × g for 5 seconds.
- □8 Unseal and place on a magnetic stand until liquid is clear.
- \Box 9 Remove and discard all supernatant.
- $\Box 10$ Move from the magnetic stand to a bench.
- □11 Add 175 µl UB1.
- \Box 12 Shake at 1800 rpm for 2 minutes.
- \Box 13 Centrifuge at 280 × g for 5 seconds.
- □14 Unseal and place on a magnetic stand until liquid is clear.
- \Box 15 Invert ELM4.
- □16 Remove and discard all supernatant.
- \Box 17 Move from the magnetic stand to a bench.
- $\Box 18\,$ Add 40 of ELM4.
- \Box 19 Shake at 1800 rpm for 2 minutes.
- \Box 20 Centrifuge at 280 × g for 5 seconds.
- □21 Place on the 37°C preheated microheating system and incubate for 45 minutes.
- \Box 22 Remove the adhesive seal from the plate.
- □23 Unseal and place on a magnetic stand until liquid is clear.
- □24 Remove and discard all supernatant.
- $\Box 25\,$ Add 50 μl of UB1.

illumina

Illumina Custom Protocol

Amplify Libraries

- \Box 1 Arrange Index 1 (i7) adapters in columns 1–12.
- \Box 2 Arrange Index 2 (i5) adapters in rows A–H.
- \Box 3 Place the plate on the TruSeq Index Plate Fixture. \Box 3
- \Box 4 Add 4 µl of each Index 1 adapter down each column.
- $\Box 5$ Add 4 µl of each Index 2 adapter across each row.
- $\square 6$ Remove and discard all supernatant from the HYP plate.
- \Box 7 Remove from the magnetic stand.
- $\square 8$ Add 22.5 µl diluted HP3.
- \Box 9 Shake at 1800 rpm for 30 seconds.
- □10 Incubate at room temperature for at least 5 minutes.
- \Box 11 Create the amplification mix:
 - **96 libraries**—Add 56 µl TDP1 to 2.8 ml of PMM2.
 - ▶ **48 libraries** Combine 28 µl TDP1 and 1.4 ml PMM2 in a 1.7 ml microcentrifuge tube.
 - **16 libraries**—Combine 9.2 μl TDP1 and 460 μl PMM2 in a 1.7 ml microcentrifuge tube.
- \Box 12 Invert to mix.
- $\Box13\,$ Add 22 μl to the IAP plate.
- \Box 14 Unseal the HYP plate.
- \Box 15 Place on a magnetic stand until liquid is clear.
- $\Box 16\,$ Transfer 20 μl supernatant from the HYP plate to the IAP plate.
- $\Box 17\,$ Shake at 1600 rpm for 30 seconds.
- \Box 18 Centrifuge at 280 × g for 1 minute.
- $\Box 19\,$ Place on the thermal cycler and run the program.

SAFE STOPPING POINT

If you are stopping, seal the plate and store at 2°C to 8°C for up to 2 days. Alternatively, leave on the thermal cycler overnight.

Clean Up Libraries

- $\Box 1 ~~$ Add 85 μl AMPure XP Beads to the CLP plate.
- \Box 2 Centrifuge the IAP plate at 280 × g for 1 minute.
- $\exists 3$ Unseal the IAP plate.
- $\Box 4$ $\,$ Transfer all supernatant to the CLP plate.
- $\Box 5$ Shake at 1800 rpm for 2 minutes.
- $\Box 6$ Centrifuge the plate at 280 × g for 5 seconds.
- \Box 7 Incubate room temperature for 15 minutes
- $\square 8$ Unseal and place on a magnetic stand until liquid is clear.
- $\Box 9$ Remove and discard 135 μl supernatant.
- $\Box 10\,$ Wash 2 times with 200 μl 80% EtOH.
- \Box 11 Air dry on the magnetic stand for 15 minutes.
- \Box 12 Remove from the magnetic stand.
- \Box 13 Add 15 µl RSB.
- \Box 14 Shake at 1800 rpm for 2 minutes.
- \Box 15 Centrifuge at 280 × g for 5 seconds.
- \Box 16 Return RSB to 2°C to 8°C storage.
- □17 Incubate the plate at room temperature for 2 minutes.
- □18 Unseal and place on a magnetic stand until liquid is clear.
- $\Box 19\,$ Transfer 12.5 μl supernatant to the LNP plate.
- SAFE STOPPING POINT
- If you are stopping, seal the plate and store at
- -25°C to -15°C for up to 7 days.

Pool and Quantify Libraries

- 1 Transfer 5 μl from the LNP plate to a 2 ml microcentrifuge tube.
- \Box 2 Vortex for 5 seconds.
- \Box 3 Centrifuge at 600 × g for 5 seconds.
- □4 Load 1 µl pooled library onto the Standard Sensitivity NGS Fragment Analysis Kit or DNA 1000 Kit.
- $\Box 5$ Determine the concentration of the pooled library.
- $\Box 6$ Select the **Region Analysis** tab.
- \Box 7 Drag the blue region lines to capture the 100–300 bp region.
- $\Box 8$ Dilute each pooled library to 4 nM using RSB.

SAFE STOPPING POINT

If you are stopping, seal the plate and store at -25°C to -15°C.

Prepare Consumables

- □1 Remove the reagent cartridge from -25°C to -15°C storage.
- □2 Thaw reagents in a room temperature water bath for 90 minutes.
- \Box 3 Invert the cartridge 5 times to mix reagents.
- $\Box 4$ Gently tap on the bench to reduce air bubbles.
- □5 Remove a new flow cell package from 2°C to 8°C storage.
- □6 Set the unopened flow cell package aside at room temperature for 30 minutes.
- \Box 7 Remove the flow cell from the foil package and flow cell container.
- $\square 8$ Clean the glass surface of the flow cell with a lint-free alcohol wipe.
- \Box 9 Dry with a lint-free lens cleaning tissue.

Denature, Dilute, and Load Libraries

- \Box 1 Dilute 100 µl 1 N NaOH to 1 ml 0.1 N NaOH.
- $\Box 2$ Invert the tube several times to mix.
- □ 3 Thaw the Hybridization Buffer at room temperature.
- $\Box 4$ Vortex briefly before use.
- $\Box 5$ Thaw the RSB at room temperature.
- □6 Transfer 25 µl of the 4 nM library pool to a new microcentrifuge tube.
- $\Box 7~$ Add 75 μl RSB to dilute to 1 nM.
- $\square 8$ Vortex briefly and then centrifuge at $280 \times g$ for 1 minute.
- \Box 9 Combine 5 µl library with 5 µl 0.1 N NaOH.
- \Box 10 Vortex briefly and then centrifuge at 280 × g for 1 minute.
- $\Box 11\,$ Incubate at room temperature for 5 minutes.
- \Box 12 Add 5 μl 200 mM Tris-HCl, pH 7.0.
- \Box 13 Vortex briefly and then centrifuge at 280 × g for 1 minute.
- $\Box 14\,$ Add 985 μl of prechilled Hybridization Buffer.
- \Box 15 Vortex briefly and then centrifuge at 280 × g for 1 minute.
- $\Box 16\,$ Transfer 180 μl library to a new microcentrifuge tube.
- $\Box 17\,$ Add 320 μl prechilled Hybridization Buffer.
- \Box 18 Vortex briefly and then centrifuge at 280 × g for 1 minute.
- 19 [Optional] Denature and dilute a PhiX control to 1.8 pM and a 1% spike-in to the final library.
- □20 Clean the foil seal covering reservoir **#16** using a low-lint tissue.
- $\Box 21\,$ Pierce the seal with a clean 1 ml pipette tip.
- $\Box 22\,$ Add 500 μl prepared libraries into reservoir #16.

Perform a Sequencing Run

- $\Box 1$ From the Home screen, select **Sequence**.
- □2 Enter your user name and password.
- □ 3 Select Next.
- $\Box 4$ Select a run name from the list of available runs.
- □5 Select Next.
- $\Box 6$ Open the flow cell compartment door.
- □7 Press the release button to the right of the flow cell latch.
- $\square 8$ Place the flow cell on the flow cell stage over the alignment pins.
- \Box 9 Close the flow cell latch to secure the flow cell.
- \Box 10 Close the flow cell compartment door.
- \Box 11 Open the reagent compartment door.
- □12 Slide the reagent cartridge into the reagent compartment until the cartridge stops.
- □13 Remove the spent reagents bottle from the compartment.
- □14 Discard the contents and slide the empty spent reagents bottle into the compartment.
- $\Box 15\,$ Close the compartment door and select Next.
- \Box 16 Confirm run parameters.
- \Box 17 Select Next.
- □18 When the automated check is complete, select **Start**.
- □19 Monitor run progress, intensities, and quality scores as metrics appear on the screen.

View Analysis Results

- □1 From the Local Run Manager dashboard, click the run name.
- \Box 2 From the Run Overview tab, review the sequencing run metrics.
- □3 [Optional] Click the **Copy to Clipboard** ^I icon for access to the output run folder.
- □4 Click the Sequencing Information tab to review run parameters and consumables information.
- □5 Click the Samples and Results tab to view the analysis report.
- □6 [Optional] Click the **Copy to Clipboard** [■] icon for access to the Analysis folder.

